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and
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ABSTRACT

The role of anharmonicity in the dynamics of DNA at bio-
logical temperatures is currently discussed by many authors.
Here results obtained by a Toda lattice model of the mol-
ecule in Refs. 1-4 are summarized.

Introduction

In recent years the possibllity that anharmonic excitations could
play T-i31° i the dynamics of DNA has been connidereﬁiby several au-
thors . Further references are given in Muto et al.". It has been sug-
gested that solitons may be generated thermally at biological temperatures.
However, this question is far fr bténq settled at the present tine and
can ke described aa controversial 3=15,7e.9. The denaturation of the
DNA double helix has been inxgs§+qatod by statistical mechanics methods
and by dynamical simulationa*®’"’. Here the potential for the hydrogen
bond in each basa pai. is approximated by a Morse potential.

In the present papesr we describe the Toda lattice model of DNA in-
troduced in Refs. 1,2." Temperature enters via the initial conditions and
through a perturbation of the dynamical equations. The model is refined
by introduction of traneversal motion of the Toda lattice~ and by trans-
versal cougllnq of two lattices in the hydrogen bonds present in the
base pairs™. Using Lennard-Jones potentials to model thesa bonds we are
able to obtain results conceraing thy open statu«s of DNA at biological
temperatureer.

The Toda Lattice Model
The Toda 1att1c018'19 consistas of N masses (each of mass m) with

longitudinal displacements from equidistant ¢quilibrium positions given
by yn(t) (n=1,2,:*+,N) as a function of time.
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Figure 1. Lattice with longitudinal and transversal degrees of freedom.

Fig. 1 illustrates the case where both longitudinal and tLansversal
displacements, given by Yn (t) and v (t) respectively, n =1,2,---,N, are
possible. & is the lattice constant The masses are connected to their
nearest neighbours with nonlinear springs of potential V(y n+#l ~ Yp) when
only longitudinal motion is allowed. In this case Newton's second law
becomes

v = ' - - ' - = c e
my v (Yn+1 Yn) v (Yn Yn-l) ,» N 1, N (la)
where the dot indicates a time derivative and the prime indicates a de-
rivative with respect to the argument. For the Toda lattice the nonlin-
ear spring potential is
(Y, - ¥,) = exe [-bly ., - v)] +aly - y) (2)
where a and b are arbitrary parameters.

In the model each mass represents a single base pair, and the non-
linear spring reprasents the potential between adjacent base palirs (of
both DNA strands of the double helix in the simple model).

The most realistic potential function hetween the base pairs is the
generalized van der Waals function

- A B
V(y -yY) ™ - . (3)
n+l n (2_Yn+1_yn)P (Q+Yn+1-yn)q

Equating polynom.al coefficlents of V and v up to lsﬂ.order gives b =
(p+g+3)/% where £ = 3.4 A. With p = 12 and q = 6“Y’“" we gat

b =6.18 x 10 m}! , (4)

Near the minimum (y ne1 - Yo " 0), Eq. 2 reduces to a harironic potantial
with a spring foxco constant k = ab. Experimental measuremunts cf the
sound velocity of DNA (2vk/m = 1.69x 10? m/8)%* then require

ar 5,13 « 100V N, (5)

m being the mass of the base pair, m + 1.28 x 10'® k922'23.
In a cyclic arrangement of the N massaes, corresponding to a closed
DNA molecule, we use the perliodic boundary conditions
Yon(t) = v (0) (6a)
The advantage of the Tod 19§tico model is Llts integrability. As
first pointed out by Flaschka 4, the equations of motion, Eq. la, can -
after a transformation - be expressod in a Lax formalism. Using thiws re-



sult thg injtial value problem for the infinite lattice can be solved

exactly“* “°, In particular, solitons are specified by bound states f~r
which the corresponding eigenvalues are greater than + 1 or less tlan
-19772", A simple and effective method for counting the number of sol-

itons29 has been described and used in Refs. 1,2, as we shall see in
the fcllowing sections.

Thermalization of the Simple Model

In order to thermalize the sys’em we first assume1 that there is a
total energy approximately equal to kpT initially in the system. (Here
kg is the Boltzmann constant and T is the absolute temperature.) This
is c¢learly an approximation since, at thermal equilibrium, the average
kinetic energy is equal to ik T, while the pocential energy differs from
ikBT in a nonlinear system. Assuming, nevertheless, that all masses have
gaussian random displacements from their equilibrium rositions and
gaussian random velocities such that the tutal energy is equally shared
between kinetic and potential energy we get the number of solitons, Ng,
versus temperature shown in Fig. 2. Here the soliton counter is applied
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Figure 2. Logarithm of No/N versus logarithm of T measured in K. Kinetic
and potential energles equal to ikBT The bullet (e) indicates biologi-
cal t“emperature.

directly to the initial data for the unperturbed Toda lattice. The point
indicated by bullet (e®) corresponds to T = 310 K and gives NS/N = 0.35.
At high temperatures Ng + N as expacted. At lower temperatures (T < 100 K)
thie number of solitons is proportional to TY?, Almost similar results
were found when the initial enwrgy of the system was eltgsr completaly
kinetic or completely potential. In an unpublished paper-” 3chneider and
Stoll, using the ideal soliton gas appiroximation, also found a T!?-law



for NS. However, according to Bolterauer and Opper_§1 their analysis con-
tains a mistake in the_consideration of canonically conjugate variables.
Mertens and Bittner~“’~~, using action-angle variables for the Toda lat-
tice, find Ng =« T at low temperatures. The discrepancy may be due to
the gact that not only solitons, but also anharmonic phonons are coun-

ted
A second approach to thermalization? consists in describing the in-
teraction of the DNA molecule with a thermal reservoir at a finite tem-
perature through Langevin equations~™’ €:.9:  Thus a damping force and a
noise force
Fn ='mAYn +rln(t) (7)
are added on the right-hana side of the dynamical equations, Eq. la.

Here A is the damping couefficient and N (t) is the random force with
correlation function

<nn(t) nn,(b')> = ZmAkBT Gnn' §(t-t') (8)

in the case of white noise. The coefficient, 2mAk, T, in front of the
Kronecker delta, 6nn" and Dirac's delta f\mctiog4 g(t -t'), is chosen in
accordance with fluctuation-dissipation theorem™". Assuming that the
damping is simply due to the viscosity of the water surrounding the DNA-
molecule representative values of the damping coefficient are A =

J.85 /ab/m (corresponding to approximately critical damping) and A =

3 Yab/m (corresponding to overdamping). By integrating the perturbed dy-
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Figure 3. Logarithm of No./N versus logarithm of T measured in K for dam-
ping coefficient A//ab/m = 5, 3, 0.85 indicated by circles, squares and
triangles. Full curve obtuined by thermalized initial data: Kinetic en-
ergy equal to kBT potential energy equal to O.



namical equations, Egs. la and 7, until thermal equilibrium has been
reached and then using the soliton counter on the resulting solution we
obtain curves for No versus T as shown in Fig. 3. For different values
of o we get good agreement with the results obtained by the first ap-
proximation where the thermal fluctuations are present only in (the kin-
etic energy of) the initial data. Thus Ng = 0.31 Nat T = 310 K and
Ng « T¥? for T < 100 K.

Thus both of the two thermalization approaches demonstrate that a
significant number of solitons, approximately 1/3 of the number of base
pairs, are generated at biological temperature.

Toda Lattice with Transversal Degree of Freedom

In order tg refine the model we first introduce a transversal de-
gree of freedom”. As a result we get the dynamical equations

arn or

n-1
- - ' — - '
my vi(r)) 5y, vi(r _y) -§§;- (1b)
, = 4,2, ,N,
or ar
M = - V'(r ) =— - V'(r )1—”1 (lc)
n n 57; n-1 v '
Here the potential V is still given by Eq. 2, and

- - ) paprvay S

rn = m + yn+1 Yn) + (vn+l \‘n) L (9)

Periodic boundary conditions for longitudinal and transverse displace-
ments are

In order to derive continuum approximations for the lattice ggug%ions,
Eqs. 1b-c, we follow Collins, Rosenau, and Hyman and Rosenau - who
showed that

ME ) -aqey s e -l -8 2 e e L (10
n+l 2T n n-1 \ 12 ax? ax? !

where T is a nonlinear function of fn(t) + f(x,%t) g f(nt,t) in the con-
tinuum limit n » », & » 0, nt = x. In the case where the longitudinal
strain u, = (y +1- yn)/l is of tho samne order of magnitude as the trans-
versal strain L 2 (v - vn)/l we obtain (see also Ref. 18)

n+l
P - _ B B (.12 p 22
a utt Buxx 2 (u )xx * 2 (w )xx * a 12 uxxtt (1la)
e - ‘ p &2
a wtt B(uw)xx * al wxxtt (11b)

in the Boussinesq approximation where
2 3
vy -8 [EmD B
n' b 2 6 )

(12)



Here p = m/% = 3.77 x 10°"® kg/mand B = &b = 21 in the case of DNA. Ex-
act travelling wave solutions to Eq. 11 of the form

w=t\/2+Bu$—E'12:B, (13)
for infinite and finite length of the molecule, are found in Refs. 3 and
39. The numerical simulations of this hybrid travelling wave (with in-
itial velocity s = 1.5) is shown in Figs. 4 and 5 in the discrete case,
Egqs. 1lb-c and the continuum case, Eqs. lla-b. In the discrete case rather

0 site 258 0 site 256
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time time
78 78
Longitudinal component of velocity Transversal component of velocity
| um A T 1
-62 0 85 .275% 0 59

Figure 4._Gr¢y-scalg plot of (a) longitudinal and (b) transversal vel-
ocities, yn(t) and vn(t), versus s‘te n and normalized time t. Disper-
slon occurs at t = 3,

ctrong dispersion occurs while in the continuum case blow-up occurs in
th longitudinal component after a finite time. (In the latter case the
hybi .d wave remains stabie for smaller values of the initial velocity

8 (8 > 1).)

We conclude that despite the fact that the hybrid wave may not be
stable the longitudinal soliton-like excitation travels along the mol-
ecule for extended periods of time, also in the presence of a transver-
sal degree of freedom.



Two Coupled Toda Lattices

Finally, we consider? two strands cf DNA coupled together via the
hydrogen bonds in the base pairs as shown in Fig. 6. The potentials

iength

51.2

Iength 512

time time

Longitudinal component of strain Transversal component of strain

Figure 5. Grey-scale plot of (a) longitudinal and (b) tr. 1sversal
strains, u(x,t) and w(x,t), versus normalized distance x and time t.
Blow-up (black lines) occurs in the longitudinal component at t = 9,

Figure 6. DNA double hel!x. Two identical Toda chains are connected by
Lennard-Jones potentials representing the hydrogen bonds between the
two strands.



along the strands, V I and VT 11’ are Toda potentials of the form of
Eq. 2. The hydrogen génds are moéelled by Lennard-Jones potentials, Vig-
of the form of Eq. 3 with p = 12 and q = 6. The main result of the in-
vestigation is shown in Fig. 7 illustrating the averaged life-~time of
the open states versus temperature T. The open state of a hydrogen bond

20
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100 200 300 400
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Figure 7. Averaged life-time of open states versus temperature T.
Bin 3 - 17 psec: open symbols.
Bin > 18 psec: stars.

occurs when the transversal distance between the bases in a pair is
bigger than 4 A. To cbtain Fig. 7 we divide the open states in three
bins. The first bin contains open states with a life-time shorter than
3 psec. These states are not considered in the calculations of the av-
eraged life-times. The second bin contains open states with life-times
3 - 17 psec. The averaged values of this group are shown in Fig. 7 as
open symbols. Finally, the third bin contains the open states with a
life-time longer than 18 psec. These averaged values are plotted by
stars. The figure clearly shows that for temperatures larger than T =
250 K, the presence of open states which last for more than 20 psec is
significant.

Thus we conclide that anharmonicity may play a role in the DNA de-
naturation,
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